Antioxidative stress-associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress.

نویسندگان

  • Elisabeth Dernbach
  • Carmen Urbich
  • Ralf P Brandes
  • Wolf K Hofmann
  • Andreas M Zeiher
  • Stefanie Dimmeler
چکیده

Adult and embryonic stem cells hold great promise for regenerative medicine. Expression profiling of stem cells revealed a characteristic imprint of genes, so-called "stemness" genes, providing resistance to stress. Circulating progenitor cells with an endothelial phenotype (EPCs) can be isolated from peripheral blood and contribute to neovascularization and endothelial regeneration. We investigated whether EPCs are equipped with an antioxidative defense to provide resistance against oxidative stress. EPCs exhibited a significantly lower basal reactive oxygen species (ROS) concentration as compared with mature umbilical vein endothelial cells (HUVECs). Incubation with H(2)O(2) (500 microM) or the redox cycler LY-83583 (10 microM) profoundly increased the ROS concentration to 3- and 4-fold and induced apoptosis in HUVECs. In contrast, H(2)O(2) and LY-83583 induced only a minor increase in intracellular ROS levels and apoptosis in EPCs. Consistently, the expression of the intracellular antioxidative enzymes catalase, glutathione peroxidase and manganese superoxide dismutase (MnSOD), was significantly higher in EPCs versus HUVECs and human microvascular endothelial cells. In accordance, combined inhibition of these antioxidative enzymes increased ROS levels in EPCs and impaired EPC survival and migration. Taken together, EPCs reveal a higher expression of antioxidative enzymes and, thus, are exquisitely equipped to be protected against oxidative stress consistent with their progenitor cell character.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Antioxidative stress–associated genes in circulating progenitor cells: evidence for enhanced resistance against oxidative stress

Adult and embryonic stem cells hold great promise for regenerative medicine. Expression profiling of stem cells revealed a characteristic imprint of genes, so-called “stemness” genes, providing resistance to stress. Circulating progenitor cells with an endothelial phenotype (EPCs) can be isolated from peripheral blood and contribute to neovascularization and endothelial regeneration. We investi...

متن کامل

Effect of CPAP on oxidative stress and circulating progenitor cell levels in sleep patients with apnea-hypopnea syndrome.

BACKGROUND The sleep apnea-hypopnea syndrome is associated with elevated oxidative stress, which is associated with reduced levels and functional impairment of progenitor cells. OBJECTIVE To evaluate whether one month of CPAP treatment affects circulating-progenitor-cell levels and oxidative stress in patients with sleep apnea-hypopnea syndrome. METHODS We enrolled 13 patients with sleep a...

متن کامل

Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system.

Laccase is a copper-containing polyphenol oxidase that has great potential in industrial and biotechnological applications. Previous research has suggested that fungal laccase may be involved in the defense against oxidative stress, but there is little direct evidence supporting this hypothesis, and the mechanism by which laccase protects cells from oxidative stress also remains unclear. Here, ...

متن کامل

Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat

Objective(s): Nanotechnology and nanoparticles are increasingly recognized for their potential applications in aerospace engineering, nanoelectronics, and environmental remediation, medicine and consumer products. More importantly is the potential for the application of silver nanoparticles (Ag NPs) in the treatment of diseases that require maintenance of circulating drug concentration or targe...

متن کامل

Gengnianchun, a Traditional Chinese Medicine, Enhances Oxidative Stress Resistance and Lifespan in Caenorhabditis elegans by Modulating daf-16/FOXO

Objective. Gengnianchun (GNC), a traditional Chinese medicine (TCM), is primarily used to improve declining functions related to aging. In this study, we investigated its prolongevity and stress resistance properties and explored the associated regulatory mechanism using a Caenorhabditis elegans model. Methods. Wild-type C. elegans N2 was used for lifespan analysis and oxidative stress resistan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 104 12  شماره 

صفحات  -

تاریخ انتشار 2004